

Survey of 3D Deep Learning (Robo+R3 Study Group)

Arithmer R3 Div. Takashi Nakano

2019/09/12

Takashi Nakano

- Graduate School
 - Kyoto University
 - Laboratory : Nuclear Theory Group
 - Research: Theoretical Physics, Ph.D. (Science)
 - Phase structure of the universe
 - Theoretical properties of Lattice QCD
 - Phase structure of graphene
- Former Job
 - KOZO KEIKAKU ENGINEERING Inc.
 - Contract analysis / Technical support / Introduction support by using software of Fluid Dynamics / Powder engineering
- Current Job
 - Application of machine learning / deep learning to fluid dynamics
 - e.g. https://arithmer.co.jp/2019-12-29-1/
 - Application of machine learning / deep learning to 3D data

Purpose

- Purpose of this material
 - Overview of 3D deep learning
 - Comparison b/w each method of 3D deep learning
 - Main papers (In this material, I have summarized the material based on following materials and cited papers therein.)
 - E. Ahmed et al, "A survey on Deep Learning Advances on Different 3D Data Representations", 2018
 - M. M. Bronstein et al., "Geometric deep learning: going beyond Euclidean data", 2016

Application

Application of 3D Deep Learning

^[1] C. R. Qi, "PointNet: Deep Learning on Point Sets for 3D Classification and Segmentation", 2016

^[2] J. Masci et al. "Geodesic convolutional neural networks on Riemannian manifolds", 2015

Agenda

- Methods of 3D Deep Learning
 - Euclidean vs Non-Euclidean
 - Euclidean Method
 - Projections / Multi-View
 - Voxel
 - Non-Euclidean Method
 - Point Cloud / Mesh / Graph
 - Accuracy
 - Dataset / Material
 - Appendix
 - Mesh Generation
 - Laplacian on Graph
 - Correspondence

• 3D Data

Point Cloud

Mesh

Graph

	Point Cloud	Mesh	Graph
Vertex	0	0	0
Face	-	0	-
Edge	-	-	0

$$\begin{split} & [[x_0, y_0, z_0], \dots, [x_N, y_N, z_N]] \\ & [[V_{00}, V_{01}, V_{02}], \dots, [V_{F0}, V_{F1}, V_{F2}]] \\ & [[V_{00}, V_{01}], [V_{01}, V_{02}], \dots, [V_{E2}, V_{E1}]] \end{split}$$

Representation

[1] E. Ahmed et al, "A survey on Deep Learning Advances on Different 3D Data Representations", 2018

Representation

Representation of 3D data

Grid

(Translational invariant)

Euclidean

Global / Extrinsic

Point of view from 3D

Rigid Small deformation

Non-Grid

(not Translational invariant)

Non-Euclidean

©2020 Arithmer.Inc.

Local / Intrinsic

Point of view from 2D Surface

Non-Rigid Large deformation

[1] J. Masci et al. "Geodesic convolutional neural networks on Riemannian manifolds", 2015

Euclidean vs Non-Euclidean

Euclidean (detail of feature)

	Feature	Merit	Demerit
Descriptors	Extraction of 3D topological feature (SHOT, PFH, etc.)	Can convert as featureCan each problem	The geometric properties of the shape is lost.
Projections	Projection of 3D to 2D	_	The geometric properties of the shape is lost.
RGB-D	RGB + Depth map	 Can use data from RGB-D sensors (Kinect/realsence) as input 	 Need depth map. Only infer some of the 3D properties based on the depth.
Volumetric	Voxelization	Expansion of 2D CNN	 Need Large memories. (grid information) Need high resolution for detailed shapes. (e.g. segmentation)
Multi-View	2D images from multi-angles	Highest accuracy in Euclidean method	Need multi-view images

Non-Euclidean

Point Cloud

 $[[x_0, y_0, z_0], [x_1, y_1, z_1]]$

Dependence of noise and density of point cloud

Mesh

Connected information b/w point cloud

Need to convert from point cloud to mesh

[1] R. Hanocka et al., "MeshCNN: A Network with an Edge", 2018

Graph

Graph (Vertex, edge)

Need to create graph type

Non-Euclidean (detail of feature)

	Feature	Merit	Demerit
Point Cloud	 Treat point cloud Need to keep translational and rotational invariance Treat unordered point cloud No connected information b/w point cloud 	 Original data is often point cloud. e.g. scanned data (No CAD data, Terrain data) Civil engineering, architecture, medical care, fashion 	 Treat noise Dependence of density of point cloud Complement b/w point cloud Cannot distinguish b/w close point cloud
Mesh	 Treat mesh data Connected information b/w point cloud Convert mesh data to structure for applying CNN 	 CAD data e.g. design in manufacturing Can keep geometry in few mesh 	Convert point cloud to mesh data
Graph	 Treat mesh as graph Vertex (node) Edge (connected information b/w point cloud) 	Same as Mesh	Create graph type CNN (non-trivial)

Non-Euclidean (detail of feature)

	Feature	Merit	Demerit
Point Cloud	 Treat point cloud Need to keep translational and rotational invariance Treat unordered point cloud No connected information b/w point cloud 	 Original data is often point cloud. e.g. scanned data (No CAD data, Terrain data) Civil engineering, architecture, medical care, fashion 	 Treat noise Dependence of density of point cloud Complement b/w point cloud Cannot distinguish b/w close point cloud
Mesh	 Treat mesh data Connected information b/w point cloud Convert mesh data to structure for applying CNN 	 CAD data e.g. design in manufacturing Can keep geometry in few mesh 	Convert point cloud to mesh data
Graph	 Treat mesh as graph Vertex (node) Edge (connected information b/w point cloud) 	Same as Mesh	Create graph type CNN (non-trivial)

 Representation of 3D data 3D data representations Non-Euclidean data Euclidean-structured data **Point clouds Projections** Volumetric Multi-view Graphs Meshes Descriptors RGB-D RGB data Depth data Voxels Octree

[1] E. Ahmed et al, "A survey on Deep Learning Advances on Different 3D Data Representations", 2018

• Each Euclidean Method (Projections / RGB-D / Volumetric / Multi-View)

Method	Application	Link
Deep Pano	Classification	<u>Paper</u>
Two-stream CNNs on RGB-D	Classification	<u>Paper</u>
VoxNet	Classification	Paper GitHub(Keras)
MVCNN	Classification Retrieval	Paper GitHub(PyTorch/TensorFlow etc.)

- Deep Pano [1]
 - Projection to Panoramic image
 - Row-wise max-pooling for rotational invariant

[1] B. Shi et al. "DeepPano: Deep Panoramic Representation for 3D Shape Recognition", 2017

- Two-stream CNNs on RGB-D [1]
 - Concatenate CNN of RGB and CNN of depth map

- VoxNet [1]
 - Voxelization of 3D point cloud to voxel
 - Not robust for data loss

- MVCNN [1]
 - Merge CNN of each images

[1] H. Su et al. "Multi-view Convolutional Neural Networks for 3D Shape Recognition", 2015

[1] E. Ahmed et al, "A survey on Deep Learning Advances on Different 3D Data Representations", 2018

Each Non-Euclidean Method (Point Cloud)

Method	Application	Link
PointNet	Classification Segmentation Retrieval Correspondence	Paper GitHub (TensorFlow)
PointNet++	Classification Segmentation Retrieval Correspondence	Paper GitHub (TensorFlow) PyTorch-geometric (PointConv)
Dynamic Graph CNN (DGCNN)	Classification Segmentation	Paper GitHub (PyTorch/TensorFlow) PyTorch-geometric (DynamicEdgeConv)
PointCNN	Classification Segmentation	Paper GitHub (TensorFlow) PyTorch-geometric (XConv)

- PointNet [1]
 - Treat unordered point cloud by max-pooling
 - Comparison b/w PointNet++
 - Detailed information is lost

Similar to Spatial Transformer Networks in 2D

Cannot treat different density of point cloud

[1] C. R. Qi, "PointNet: Deep Learning on Point Sets for 3D Classification and Segmentation", 2016

PointNet

- T-Net [1]
 - Similar to Spatial Transformer Networks in 2D
 - Spatial Transformer Networks
 - Alignment of image (transformation, rotation, distortion etc.) by spatial transformation
 - Learn affine transformation from input data (not necessarily special data)
 - Can insert this networks at each point b/w networks

Reference	Contents
<u>Paper</u>	Original Paper
Sample (PyTorch)	Dataset : MNIST

[1] M. Jaderberg et al. "Spatial transformer networks",2015

PointNet

- Spatial Transformer Networks
 - Localization net : output parameters θ to transform for input feature map U
 - Combination of Conv, MaxPool, ReLU, FC
 - Output: 2×3
 - Grid generator: create sampling grid by using the parameters
 - Sampler : Output transformed feature map V
 - pixel

Spatial Transformer Networks (2D)

Input feature map

Output feature map

[1] M. Jaderberg et al. "Spatial transformer networks",2015

- PointNet
 - T-Net
 - 3D ver. of Spatial Transformer Networks in 2D
 - Not need sampling grid (There are no gird structure in 3D)
 - Directly apply transformation to each point cloud
 - Output parameter
 - 3×3 in first T-Net
 - 64 × 64 in second T-Net

[1] C. R. Qi, "PointNet: Deep Learning on Point Sets for 3D Classification and Segmentation", 2016

- PointNet++ [1]
 - Comparison b/w PointNet
 - Detailed information is kept
 - Can treat different density of point cloud

Concatenation of multi-resolution

[1] C. R. Qi et al. "Pointnet++: Deep hierarchical feature learning on point sets in a metric space", 2017

- PointNet++
 - Set abstraction
 - Grouping in one scale + feature extraction
 - Sampling Layer: Extraction of sampling points by farthest point sampling (FPS)
 - Grouping Layer: Grouping points around sampling points
 - PointNet Layer : Applying PointNet

- PointNet++
 - Point Feature Propagation for segmentation
 - Interpolation : interpolation from k neighbor points
 - Concatenation

[1] C. R. Qi et al. "Pointnet++: Deep hierarchical feature learning on point sets in a metric space", 2017

- PointNet++
 - Single scale grouping
 - Multi scale/resolution grouping
 - Combination of features from different scales
 - Robust for non-uniform sampling density
 - Modifying architecture in set abstraction level

multi-scale grouping (MSG)

High computational cost

multi-resolution grouping (MRG)

Concatenation of information of multi-resolution

[1] C. R. Qi et al. "Pointnet++: Deep hierarchical feature learning on point sets in a metric space", 2017

Non-Euclidean (Point Clouds)

- PointNet++
 - Detail of architecture
 - Note: #vertex is fixed

Architecture for classification and part segmentation of ModelNet using single scale grouping

Set abstraction level

$$SA(K, r, [\ell_1, \cdots, \ell_d])$$
#vertex radius Pointnet (#FC:d)

Global Set abstraction level

 $SA([\ell_1, \cdots, \ell_d])$ #FC:d

Convert single vector by maxpooling

Fully Connected

 $FC(\ell, dp)$ Ratio of dropout Channel

Feature Propagation

$$FP(\ell_1, \cdots, \ell_d)$$
 #FC:d

 $\#input\ vertex: 1024$

1024/2

512/4

 $SA(512, 0.2, [64, 64, 128]) \rightarrow SA(128, 0.2, [64, 64, 128]) \rightarrow SA([256, 512, 1024])$

— Same in cls. and seg.

$$\rightarrow$$
 $FC(512,0.5) \rightarrow$ $FC(256,0.5) \rightarrow$ $FC(K)$ class

For classification

For part segmentation

per point segmentation

- PointNet++
 - Detail of architecture
 - Note: #vertex is fixed

Architecture classification of ModelNet using multi-resolution grouping (MRG)

#input vertex: 1024

$$SA(512, 0.2, [64, 64, 128]) \rightarrow SA(64, 0.4, [128, 128, 256])$$

$$SA(512, 0.4, [64, 128, 256])$$

$$SA([256,512,1024])$$

$$SA([64, 128, 256,512])$$

$$Concat.$$

$$SA([64, 128, 256,512])$$

$$ightarrow FC(512,0.5)
ightarrow FC(256,0.5)
ightarrow FC(K)$$
 Same as single scale grouping class

- Dynamic Graph CNN (DGCNN) [1]
 - PointNet + w/ Edge Conv.
 - Edge Conv.
 - Create local edge structure dynamically (not fixed in each layer)

Search neighbors in feature space by kNN

$$x_i' = \sum_{j \in N(i)} h_{\Theta}(x_i, x_j - x_i)$$
global local

[1] Y. Wang, "Dynamic Graph CNN for Learning on Point Clouds", 2018

- PointCNN [1]
 - Downsampling information from neighborhoods into fewer representative points

 Representation of 3D data 3D data representations Non-Euclidean data Euclidean-structured data Point clouds **Projections** Multi-view Graphs Meshes Descriptors Volumetric RGB-D RGB data Depth data Voxels Octree

[1] E. Ahmed et al, "A survey on Deep Learning Advances on Different 3D Data Representations", 2018

• Each Non-Euclidean Method (Mesh)

Method	Application	Link
MeshCNN	Classification Segmentation	Paper GitHub (PyTorch)
MeshNet	Classification	Paper GitHub (PyTorch)

- MeshCNN [1]
 - Edge collapse by pooling
 - Can apply only the manifold mesh

- MeshNet
 - Input feature
 - Center, corner, normal, neighbor index

[1] Y. Feng et al. "MeshNet: Mesh Neural Network for 3D Shape Representation", 2018

 Representation of 3D data 3D data representations Non-Euclidean data Euclidean-structured data Point clouds **Projections** Volumetric Multi-view Graphs Meshes Descriptors RGB-D RGB data Depth data Voxels Octree

[1] E. Ahmed et al, "A survey on Deep Learning Advances on Different 3D Data Representations", 2018

- Each Non-Euclidean Method (Graph)
 - Spectral / Spatial Method

Spectral

$$\phi_i=e^{i\omega x}$$
, $\lambda_i=\omega^2$

Generalization of Fourier basis

- [1] M. M. Bronstein et al., "Geometric deep learning: going beyond Euclidean data", 2016
- [2] J. Masci et al. "Geodesic convolutional neural networks on Riemannian manifolds", 2015
- [3] M. Fey et al. "SplineCNN: Fast Geometric Deep Learning with Continuous B-Spline Kernels", 2017

Convolution $(f * g)(x) = \sum_{j=1}^{J} g_j D_j(x) f$

Patch Operator

$$D_{j}(x)f = \sum_{y \in N(x)} \omega_{j}(\mathbf{u}(x,y))f(y)$$
Pseudo-coordinate

 $\mathbf{u}(i, j) = (\rho, \theta)$

- Each Non-Euclidean Method (Graph)
 - Spatial method is more useful than spectral method.

Method	Structure	Feature
Spectral	Fourier basis in manifoldLaplacian eigenvalue/eigenvector	 Spectral filter coefficients is base dependent in some method No locality in some method High computational cost
Spatial	Create local coordinatePatch operator + Conv.	LocalityEfficient computational cost

- Each Non-Euclidean Method (Graph)
 - Spectral, Spectral free

Method	Method	Application	Link
Spectral CNN	Spectral	Graph	<u>Paper</u>
Chebyshev Spectral CNN (ChebNet)	Spectral free	Graph	Paper GitHub (TensorFlow) PyTorch-geometric (ChebConv)
Graph Convolutional Network (GCN)	Spectral free	Graph	Paper PyTorch-geometric (GCNConv)
Graph Neural Network (GNN)	Spectral free	Graph	<u>Paper</u>

- Spectral CNN [2]
 - cannot use different shape
 - Spectral filter coefficients is base dependent
 - High computational cost
 - No locality

Laplacian
$$(\Delta f)_i \propto \sum_{(i,j) \in \mathcal{E}} \omega_{ij} (f_i - f_j)$$

$$m{f}_{\ell}^{out} = \xi \left(\sum_{\ell'=1}^p m{\Phi}_k \widehat{m{G}}_{\ell,\ell'} m{\Phi}_k^T m{f}_{\ell'}^{in} \right)$$
ReLU Laplacian eigenvector

Different shape

-> different basis -> different result

- Chebyshev Spectral CNN (ChebNet) [1]
 - Not calculate Laplacian eigenvectors directly
 - Locality (K hops)
 - Approximate filter as polynomial
- Graph Convolutional Network (GCN) [2]
 - Special ver. of ChebNet (K = 2)

$$Z^{(0)} = X$$

$$Z^{(1)} = \hat{L} \cdot X$$

$$Z^{(k)} = 2 \cdot \hat{L} \cdot Z^{(k-1)} - Z^{(k-2)}$$

 \widehat{L} :scaled and normalized Laplacian

[1] M. Defferrard et al. "Convolutional Neural Networks on Graphs with Fast Localized Spectral Filtering", 2016 [2] T. N. Kipf et al. "Semi-Supervised Classification with Graph Convolutional Networks", 2016

Each Non-Euclidean Method (Graph)

Charting

	Application	Link
Geodesic CNN	Mesh Shape retrieval / correspondence	<u>Paper</u>
Anisotropic CNN	Mesh / point cloud Shape correspondence	<u>Paper</u>
MoNet	Graph / mesh / point cloud Shape correspondence	Paper PyTorch-geometric (GMMConv)
SplineCNN	Graph / Mesh Classification Shape correspondence	Paper GitHub (PyTorch) PyTorch-geometric (SplineConv)
FeaStNet	Graph / Mesh Shape correspondence Segmentation	Paper PyTorch-geometric (FeaStConv)

Convolution
$$(f * g)(x) = \sum_{j=1}^{J} g_j D_j(x) f$$

Patch Operator

$$D_j(x)f = \sum_{y \in N(x)} \omega_j(\mathbf{u}(x,y))f(y)$$
Pseudo-coordinate

$$\omega_{j}(\boldsymbol{u}) = \exp\left(-\frac{1}{2}(\boldsymbol{u} - \overline{u_{j}})^{\mathrm{T}} \begin{pmatrix} \overline{\sigma_{\rho}}^{2} & 0 \\ 0 & \overline{\sigma_{\theta}}^{2} \end{pmatrix} (\boldsymbol{u} - \overline{u_{j}})\right)$$

covariance (radius, angle direction)

ACNN

$$\omega_{j}(\boldsymbol{u}) = \exp\left(-\frac{1}{2}\boldsymbol{u}^{T}\boldsymbol{R}_{\overline{\theta_{j}}}\begin{pmatrix} \overline{\alpha} & 0\\ 0 & 1 \end{pmatrix}\boldsymbol{R}_{\overline{\theta_{j}}}^{T}\boldsymbol{u}\right)$$

Rotation of θ to the maximum curvature direction

The degree of anisotropy

MoNet
$$\omega_j(\boldsymbol{u}) = \exp\left(-\frac{1}{2}(\boldsymbol{u} - \mu_j)^T \Sigma_j^{-1}(\boldsymbol{u} - \mu_j)\right)$$

Learning parameters

- [1] J. Masci et al. "Geodesic convolutional neural networks on Riemannian manifolds", 2015
- [2] D Boscaini et al. "Learning shape correspondence with anisotropic convolutional neural networks", 2016
- [3] F. Monti et al. "Geometric deep learning on graphs and manifolds using mixture model CNNs", 2016
- [4] M. Fey et al. "SplineCNN: Fast Geometric Deep Learning with Continuous B-Spline Kernels", 2017

- Geodesic CNN (GCNN)
 - Create local coordinate
 - Do not verify the meaningful chart (need to create small radius chart)
- Anisotropic CNN (ACNN)
 - Fourier basis is based on anisotropic heat diffusion eq.
- MoNet
 - Learn filter as parametric kernel
 - Generalization of geodesic CNN and anisotropic CNN

- SplineCNN [1]
 - Filter based on B-spline function
 - Efficient computational cost

$$x_{i}' = \frac{1}{|N(i)|} \sum_{j \in N(i)} x_{i} \cdot h_{\Theta}(e_{i,j})$$

 $\begin{bmatrix} 1 \\ b_1 \\ \end{bmatrix}$

Weighted B-Spline basis

[1] M. Fey et al. "SplineCNN: Fast Geometric Deep Learning with Continuous B-Spline Kernels", 2017

FeaStNet [1]

Dynamically determine relation b/w filter weight and local graph of a node

[1] N Verma et al. "FeaStNet: Feature-Steered Graph Convolutions for 3D Shape Analysis", 2017

- PyTorch-geometric
 - https://github.com/rusty1s/pytorch_geometric
 - Library based on PyTorch
 - For point cloud, mesh (not only graph)
 - Include Point cloud, graph-type approach code
 - PointNet++, DGCNN, PointCNN
 - ChebNet, GCN, MoNet, SplineCNN, FeaStNet
 - Easy to get the famous sample data and transform same data format
 - ModelNet, ShapeNet, etc.
 - Many example and benchmark

- Accuracy (Classification)
 - around 90% in any method (except VoxNet)

Method	"ModelNet40" Overall Acc. [%] / Mean class Acc. [%]	"SHREC" Overall Acc. [%]
VoxNet	85.9 / 83.0	_
MVCNN	- / 90.1	96.09
PointNet	89.2 / 86.0	_
PointNet++	90.7 / —	_
DGCNN	92.9 / 90.2	_
PointCNN	92.2 / 88.1	_
MeshNet	- / 91.9	_
MeshCNN	-/-	91.0

%Please refer the detail in each paper (mentioned in each page)

Accuracy (Segmentation)

Method	Part segmentation "ShapeNet" mloU (mean per-class part-averaged IoU) [%]	Part segmentation "ScanNet" Acc. [%]	Part segmentation "COSEG" Acc. [%]	Scene segmentation "S3DIS" Acc. [%] / mloU [%]	Human body segmentation "including SCAPE, FAUST etc." Acc. [%]
PointNet	80.4 (57.9 – 95.3)	73.9	54.4 — 91.5	78.6 / —	90.77
PointNet++	81.9 (58.7 – 95.3)	84.5	79.1 – 98.9	-/-	_
DGCNN	82.3 (63 . 5 – 95 . 7)	_	_	84 . 1 / 56.1	_
PointCNN	84.6	85.1	_	- / 65.39	_
MeshCNN	_	_	97.56 - 99.63	-/-	92.30
FeaStNet	81.5	_	_	-/-	_

%Please refer the detail in each paper (mentioned in each page)

Dataset

• 3D Dataset

	Contents	Data Format	Purpose	PyTorch-geometric
ModelNet10/40	3D CAD Model (10 or 40 classes)	Mesh (.OFF)	Classification	ModelNet
<u>ShapeNet</u>	3D Shape	Point Cloud (.pts)	Segmentation	ShapeNet
<u>ScanNet</u>	Indoor Scan Data	Mesh (.ply)	Segmentation	-
S3DIS (<u>original</u> , <u>.h5</u>)	Indoor Scan Data	Point Cloud	Segmentation	S3DIS

ScanNet: registration required

S3DIS: registration required (for original)

Dataset

• 3D Dataset

	Contents	Data Format	Purpose	PyTorch-geometric
SHREC	many type for each contest	-	Retrieval	_
SHREC2016	Animal, Human (Part Data)	Mesh (.OFF)	Correspondence	SHREC2016
TOSCA	Animal, Human	Mesh (same #vertices at each category, separate file of vertices and triangles)	Correspondence	TOSCA
<u>PCPNet</u>	3D Shape	Point Cloud (.xyz) (Including normal, curvature files.)	Estimation of local shape (Normal, curvature)	PCPNet
FAUST	Human body	Mesh	Correspondence	FAUST

FAUST(Note): registration required

Material

Material of 3D deep learning (3D / point cloud)

Paper	Comment
A survey on Deep Learning Advances on Different 3D Data Representations	 Review of 3D Deep Learning Easier to read it Written from point of view about Euclidean and Non-Euclidean method
<u>Paperwithcode</u>	Paper w/ code about 3D
Point Cloud Deep Learning Survey Ver. 2	Deep learning for point cloudSurvey of many papers

Material of 3D deep learning (graph)

Paper	Comment
Geometric deep learning: going beyond Euclidean data	Review of geometric deep learning
Geometric Deep Learning	summary of paper and code about geometric deep learning
Geometric Deep Learning on Graphs and Manifolds (NIPS2017)	 Presentation (youtube) about geometric deep learning

Summary

- There are many methods of 3D deep learning.
- Two main method
 - Euclidean vs Non-Euclidean
 - Euclidean Method
 - Projections / Multi-View / Voxel
 - Non-Euclidean Method
 - Point Cloud / Mesh / Graph
- Each method have merit and demerit.
 - We need to choose the better method for each data type and application.
- The research about 3D deep learning is growing.

Appendix

- Appendix
 - Mesh Generation
 - Laplacian on Graph
 - Correspondence

Appendix: Mesh Generation

- Mesh Generation
 - In this material, I have summarized these materials.

Link	Contents
点群面張り(精密工学会)	Surface reconstruction
メッシュ処理(精密工学会)	Mesh processing
CV勉強会@関東発表資料 点群再構成に関するサーベイ	Survey of point cloud reconstruction

Difficulty of Mesh Generation

Processing	Difficulty
Pre-processing	Reduction of Noise / Missing / Abnormal value / density difference of vertices
Post-processing	Mesh smoothing / hole filling

Ground Truth

Noise / Abnormal value

Missing / density difference of vertices

Mesh smoothing / hole filling

Appendix : Mesh Generation

Kinds of Mesh Generation

Kind	Feature	Classification of the method
Direct Triangulation	Direct mesh generation form point cloud	Explicit method
Surface Smoothness	Smooth surface mesh from point cloud	Implicit method

Direct Triangulation

Surface Smoothness

Appendix: Mesh Generation

- Classification of the method
 - In general, it is easier to use the implicit method, since there are noise of point cloud.

Classification of the method	Information to use	Influence of noise and density of vertices	Guarantee of accuracy
Explicit method	Vertices	Large (error of vertices = error of meshes)	
Implicit method	Meshes based on isosurface of function fields which is calculated from vertices	Small	0

Appendix: Mesh Generation

- Kinds of Mesh Generation (Detail)
 - Direct Triangulation (example of built-in function in MeshLab)

Method	Feature
Voronoi-Based Surface Reconstruction	Creation of Delaunay diagram adding the vertices using Voronoi diagram
	Roll the ball over the point cloud and generate mesh from the point cloud located within a certain distance

- Voronoi-Based Surface Reconstruction
 - Voronoi diagram
 - Region divided by the bisector of each vertices (in 2D)
 - Delaunay triangulation
 - Triangulation by connection of vertices

[1] N. Amenta et al. "A New Voronoi-Based Surface Reconstruction Algorithm", 1998

Ball-Pivoting Algorithm

[1] F Bernardini et al. "The Ball-Pivoting Algorithm for Surface Reconstruction", 1999

Appendix: Mesh Generation

- Kinds of Mesh Generation (Detail)
 - Surface Smoothness (example of built-in function in MeshLab)

Method	Feature
Signed distance function + Marching Cubes	Creation of Signed distance function by using the distance b/w vertices and surface + Mesh generation by using Marching Cubes
Screened Poisson surface reconstruction (Poisson surface reconstruction)	Distinguish b/w inside and outside of surface by using Poisson eq.

Signed distance function + Marching Cubes

Oriented tangent planes

Estimated signed distance

Output of modified marching cubes

[1] H. Hoppe et al. "Surface Reconstruction from Unorganized Points", 1992

- Screened Poisson surface reconstruction
 - get Indicator Function by solving the Poisson eq.

Poisson eq.

$$\Delta \chi \equiv \nabla \cdot \nabla \chi = \nabla \cdot \mathbf{V}$$

Poisson surface reconstruction

Screened Poisson surface reconstruction

[1] M. Kazhdan et al. "Poisson Surface Reconstruction", 2006

[2] M. Kazhdan et al. "Screened Poisson Surface Reconstruction", 2013

Appendix: Laplacian on Graph

Laplacian on Graph [1]

Graph (undirected) $(\mathcal{V},\mathcal{E})$

weight

$$\mathcal{V} = \{1, \cdots, n\}$$

$$a_i$$

$$\mathcal{E} \subseteq \mathcal{V} \times \mathcal{V}$$

$$\omega_{ij}$$

$$f: \mathcal{V} \to \mathbb{R}, F: \mathcal{E} \to \mathbb{R}$$

$$(\nabla f)_{ij} = f_i - f_j$$

div.
$$(\operatorname{div} F)_i = \frac{1}{a_i} \sum_{j:(i,j) \in \mathcal{E}} \omega_{ij} F_{ij}$$

Laplacian
$$(\Delta f)_i = \frac{1}{a_i} \sum_{(i,j) \in \mathcal{E}} \omega_{ij} (f_i - f_j)$$

$$\Delta \equiv -div \nabla$$

→Laplacian eigenvalues $\lambda > 0$

Mesh

$$\omega_{ij} = \frac{-\ell_{ij}^2 + \ell_{jk}^2 + \ell_{ki}^2}{8a_{ijk}} + \frac{-\ell_{ij}^2 + \ell_{jh}^2 + \ell_{hi}^2}{8a_{ijh}} = \frac{1}{2}(\cot \alpha_{ij} + \cot \beta_{ij})$$

$$a_i = \frac{1}{3} \sum_{jk:(i,j,k)\in\mathcal{F}} a_{ijk}$$

$$a_{ijk} = \left[s_{ijk} (s_{ijk} - \ell_{ij}) (s_{ijk} - \ell_{jk}) (s_{ijk} - \ell_{ki}) \right]^{1/2}$$

$$s_{ijk} = \frac{1}{2}(a_{ij} + a_{jk} + a_{ki})$$

• Laplacian on Graph [1]

Laplacian (as matrix)

$$\Delta f = A^{-1}(D - W)f$$

$$W = (\omega_{ij})$$

$$A = diag(a_1, \dots, a_n)$$

$$D = diag\left(\sum_{j:j\neq i} \omega_{ij}\right)$$

$$f = (f_1, \dots, f_n)^T$$

Laplacian	Δ	Condition
Unnormalized graph Laplacian	$\Delta = D - W$	A = I
Normalized Symmetry Laplacian	$\Delta = \boldsymbol{I} - \boldsymbol{D}^{-\frac{1}{2}} \boldsymbol{W} \boldsymbol{D}^{\frac{1}{2}}$	A = D + Normalization
Random walk Laplacian	$\Delta = I - D^{-1}W$	A = D

- Laplacian on Graph [1]
 - Convolution

Conv.

$$(f * g)(x) = \sum_{i \ge 0} \widehat{f}_i \widehat{g}_i \phi_i(x)$$

Matrix

$$\mathbf{f} * \mathbf{g} = \mathbf{\Phi} diag(\hat{g})\mathbf{\Phi}^{\mathrm{T}}\mathbf{f}$$

$$\mathbf{f} = (f_1, \cdots, f_n)^T$$

$$\widehat{\boldsymbol{g}} = (\widehat{g}_1, \cdots, \widehat{g}_n)$$

$$\mathbf{\Phi} = (\phi_1, \cdots, \phi_n)$$

Correspondence [1]

Each query vertex has labels as all reference vertices

[1] M. M. Bronstein et al., "Geometric deep learning: going beyond Euclidean data", 2016

Arithmer 株式会社

〒106-6040

東京都港区六本木一丁目 6番1号 泉ガーデンタワー 38/40F(受付)

03-5579-6683

https://arithmer.co.jp/

