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Self-Introduction

• Takashi Nakano
• Graduate School

• Kyoto University

• Laboratory : Nuclear Theory Group

• Research : Theoretical Physics, Ph.D. (Science)

• Phase structure of the universe

• Theoretical properties of Lattice QCD

• Phase structure of graphene

• Former Job 
• KOZO KEIKAKU ENGINEERING Inc.

• Contract analysis / Technical support / Introduction support by using software of Fluid Dynamics / 
Powder engineering

• Current Job
• Application of machine learning / deep learning to fluid dynamics

• e.g. https://arithmer.co.jp/2019-12-29-1/

• Application of machine learning / deep learning to 3D data

https://arithmer.co.jp/2019-12-29-1/


Purpose

• Purpose of this material
• Overview of 3D deep learning

• Comparison b/w each method of 3D deep learning

• Main papers (In this material, I have summarized the material based on 
following materials and cited papers therein.)
• E. Ahmed et al, "A survey on Deep Learning Advances on Different 3D Data Representations", 

2018

• M. M. Bronstein et al., "Geometric deep learning: going beyond Euclidean data", 2016

https://arxiv.org/abs/1808.01462
https://arxiv.org/abs/1611.08097


Application

• Application of 3D Deep Learning

Classification Segmentation Correspondence Retrieval

3D data restoration from 2D images, 
Pose Estimation, etc.Per-point classification

Each label 
at each vertex

same #vertex 
at each model

Comparison of Global Feature

[2]
[1]

[1] C. R. Qi, "PointNet: Deep Learning on Point Sets for 3D Classification and Segmentation", 2016
[2] J. Masci et al. "Geodesic convolutional neural networks on Riemannian manifolds", 2015

[1]

[1]

[1]



Agenda

• Methods of 3D Deep Learning
• Euclidean vs Non-Euclidean

• Euclidean Method
• Projections / Multi-View

• Voxel

• Non-Euclidean Method
• Point Cloud / Mesh / Graph

• Accuracy

• Dataset / Material

• Appendix
• Mesh Generation

• Laplacian on Graph

• Correspondence



3D Data

• 3D Data

Point Cloud Mesh

Point Cloud Mesh Graph

Vertex 〇 〇 〇

Face - 〇 -

Edge - - 〇

[ 𝑥0, 𝑦0, 𝑧0 , … , 𝑥𝑁, 𝑦𝑁, 𝑧𝑁 ]

[ 𝑉00, 𝑉01, 𝑉02 , … , 𝑉𝐹0, 𝑉𝐹1, 𝑉𝐹2 ]

[ 𝑉00, 𝑉01 , 𝑉01, 𝑉02 , … , 𝑉𝐸2, 𝑉𝐸1 ]

𝒱 𝒱

ℱ

𝒱
ℰ

Graph



Representation

• Representation of 3D data

[1] E. Ahmed et al, "A survey on Deep Learning Advances on Different 3D Data Representations", 2018

[1]



Representation

• Representation of 3D data

Euclidean

Non-Euclidean

Grid
(Translational invariant)

Non-Grid
(not Translational invariant)

Local / Intrinsic

Global / Extrinsic

Point of view from 3D

Point of view from 2D Surface

3D2D

Rigid
Small deformation

Non-Rigid
Large deformation

3D CNN2D CNN

Non-trivial CNN

〇

×

[1]

[1] J. Masci et al. "Geodesic convolutional neural networks on Riemannian manifolds", 2015

[1]



Euclidean vs Non-Euclidean

• Euclidean

[1] E. Ahmed et al, "A survey on Deep Learning Advances on Different 3D Data Representations", 2018

[1]



Euclidean vs Non-Euclidean

• Euclidean (detail of feature)

Feature Merit Demerit

Descriptors Extraction of 3D topological 
feature (SHOT, PFH, etc.)

• Can convert as feature
• Can each problem

The geometric properties 
of the shape is lost.

Projections Projection of 3D to 2D - The geometric properties 
of the shape is lost.

RGB-D RGB + Depth map • Can use data from 
RGB-D sensors 
(Kinect/realsence) as 
input

• Need depth map.
• Only infer some of the 

3D properties based 
on the depth.

Volumetric Voxelization • Expansion of 2D CNN • Need Large memories.
• (grid information)
• Need high resolution 

for detailed shapes. 
(e.g. segmentation)

Multi-View 2D images from multi-angles • Highest accuracy in 
Euclidean method

• Need multi-view 
images



Euclidean vs Non-Euclidean

• Non-Euclidean

Point Cloud Mesh Graph

Unordered point cloud

No connected information 
b/w point cloud

Connected information 
b/w point cloud

Graph (Vertex, edge)

Dependence of 
noise and density of 
point cloud

Need to convert 
from point cloud to mesh

Need to create graph type

[ 𝑥0, 𝑦0, 𝑧0 , 𝑥1, 𝑦1, 𝑧1 ]

[ 𝑥1, 𝑦1, 𝑧1 , 𝑥0, 𝑦0, 𝑧0 ]

𝒱 𝒱

ℱ

𝒱
ℰ

[1] R. Hanocka et al., "MeshCNN: A Network with an Edge", 2018

[1]



Euclidean vs Non-Euclidean

• Non-Euclidean (detail of feature)

Feature Merit Demerit

Point 
Cloud

• Treat point cloud
• Need to keep translational 

and rotational invariance
• Treat unordered point cloud
• No connected information 

b/w point cloud

• Original data is often point 
cloud.

• e.g. scanned data (No CAD 
data, Terrain data)

• Civil engineering, architecture, 
medical care, fashion

• Treat noise
• Dependence of density of 

point cloud
• Complement b/w point 

cloud
• Cannot distinguish b/w 

close point cloud

Mesh • Treat mesh data
• Connected information b/w 

point cloud
• Convert mesh data to 

structure for applying CNN

• CAD data
• e.g. design in manufacturing
• Can keep geometry in few 

mesh

• Convert point cloud to mesh 
data

Graph • Treat mesh as graph
• Vertex (node) 
• Edge (connected information 

b/w point cloud)

• Same as Mesh • Create graph type CNN 
(non-trivial) 



Euclidean vs Non-Euclidean

• Non-Euclidean (detail of feature)

Feature Merit Demerit

Point 
Cloud

• Treat point cloud
• Need to keep translational 

and rotational invariance
• Treat unordered point cloud
• No connected information 

b/w point cloud

• Original data is often point 
cloud.

• e.g. scanned data (No CAD 
data, Terrain data)

• Civil engineering, architecture, 
medical care, fashion

• Treat noise
• Dependence of density of 

point cloud
• Complement b/w point 

cloud
• Cannot distinguish b/w 

close point cloud

Mesh • Treat mesh data
• Connected information b/w 

point cloud
• Convert mesh data to 

structure for applying CNN

• CAD data
• e.g. design in manufacturing
• Can keep geometry in few 

mesh

• Convert point cloud to mesh 
data

Graph • Treat mesh as graph
• Vertex (node) 
• Edge (connected information 

b/w point cloud)

• Same as Mesh • Create graph type CNN 
(non-trivial) 



Euclidean

• Representation of 3D data

[1] E. Ahmed et al, "A survey on Deep Learning Advances on Different 3D Data Representations", 2018

[1]



Euclidean

• Each Euclidean Method (Projections / RGB-D / Volumetric / Multi-View)

Method Application Link

Deep Pano Classification Paper

Two-stream CNNs on RGB-D Classification Paper

VoxNet Classification Paper
GitHub(Keras)

MVCNN Classification
Retrieval

Paper
GitHub(PyTorch/TensorFlow 
etc.)

https://ieeexplore.ieee.org/document/7273863
https://arxiv.org/abs/1507.06821
https://www.ri.cmu.edu/pub_files/2015/9/voxnet_maturana_scherer_iros15.pdf
https://github.com/tacky0612/classification3dmodel
https://arxiv.org/abs/1505.00880
https://github.com/suhangpro/mvcnn


Euclidean

• Deep Pano [1]
• Projection to Panoramic image

• Row-wise max-pooling for rotational invariant

Panoramic image

[1] B. Shi et al. "DeepPano: Deep Panoramic Representation for 3D Shape Recognition", 2017

[1]



Euclidean

• Two-stream CNNs on RGB-D [1]
• Concatenate CNN of RGB and CNN of depth map

Concatenation[1]

[1] A. Eitel et al. "Multimodal Deep Learning for Robust RGB-D Object Recognition", 2015



Euclidean

• VoxNet [1]
• Voxelization of 3D point cloud to voxel

• Not robust for data loss 

Voxelization

Point Cloud

Voxel

[1] D. Maturana et al. "VoxNet: A 3D Convolutional Neural Network for Real-Time Object Recognition", 2015

[1]



Euclidean

• MVCNN [1]
• Merge CNN of each images

[1] H. Su et al. "Multi-view Convolutional Neural Networks for 3D Shape Recognition", 2015

[1]



Non-Euclidean (Point Clouds)

• Representation of 3D data

[1] E. Ahmed et al, "A survey on Deep Learning Advances on Different 3D Data Representations", 2018

[1]



Non-Euclidean (Point Clouds)

• Each Non-Euclidean Method (Point Cloud)
Method Application Link

PointNet Classification
Segmentation
Retrieval
Correspondence

Paper
GitHub (TensorFlow)

PointNet++ Classification
Segmentation
Retrieval
Correspondence

Paper
GitHub (TensorFlow)
PyTorch-geometric (PointConv)

Dynamic Graph CNN 
(DGCNN)

Classification
Segmentation

Paper
GitHub (PyTorch/TensorFlow)
PyTorch-geometric 
(DynamicEdgeConv)

PointCNN Classification
Segmentation

Paper
GitHub (TensorFlow)
PyTorch-geometric (XConv)

※Some equations from following pages are referred to the documents in PyTorch-geometric. 
(https://pytorch-geometric.readthedocs.io/en/latest/modules/nn.html)
I will explain PyTorch-geometric in later page.

https://arxiv.org/abs/1612.00593
https://github.com/charlesq34/pointnet
https://papers.nips.cc/paper/7095-pointnet-deep-hierarchical-feature-learning-on-point-sets-in-a-metric-space.pdf
https://github.com/charlesq34/pointnet2
https://arxiv.org/abs/1801.07829
https://github.com/WangYueFt/dgcnn
https://arxiv.org/abs/1801.07791
https://github.com/yangyanli/PointCNN
https://pytorch-geometric.readthedocs.io/en/latest/modules/nn.html


Non-Euclidean (Point Clouds)

• PointNet [1]
• Treat unordered point cloud by max-pooling

• Comparison b/w PointNet++
• Detailed information is lost

• Cannot treat different density of point cloud

Part segmentation
(Per-point classification)

Predict Affine transformation
(Transrational, Rotational Invariance)
Similar to Spatial Transformer Networks in 2D

Classification

𝑓 𝑥1, ⋯ , 𝑥𝑛 = 𝑔(ℎ 𝑥1 , ⋯ , ℎ 𝑥𝑛 )

Max-poolingInput feature

MLP

Symmetry Function

Global + Local Feature

Randomly 
rotating the object
along up-axis,
Normalization 
in unit square

Affine 
transformation

[1]

[1] C. R. Qi, "PointNet: Deep Learning on Point Sets for 3D Classification and Segmentation", 2016



Non-Euclidean (Point Clouds)

• PointNet
• T-Net  [1]

• Similar to Spatial Transformer Networks in 2D

• Spatial Transformer Networks 

• Alignment of image (transformation, rotation, distortion etc.) by spatial transformation

• Learn affine transformation from input data (not necessarily special data)

• Can insert this networks at each point b/w networks

Reference Contents

Paper Original Paper

Sample (PyTorch) Dataset : MNIST

[1] M. Jaderberg et al. "Spatial transformer networks",2015

[1]

https://papers.nips.cc/paper/5854-spatial-transformer-networks.pdf
https://pytorch.org/tutorials/intermediate/spatial_transformer_tutorial.html


Non-Euclidean (Point Clouds)

• PointNet
• Spatial Transformer Networks

• Localization net : output parameters 𝜃 to transform for input feature map 𝑈

• Combination of Conv, MaxPool, ReLU, FC

• Output :  2 × 3

• Grid generator : create sampling grid by using the parameters

• Sampler : Output transformed feature map 𝑉

• pixel

Spatial Transformer Networks (2D)
Grid generator

Input map to transformed map
Input
feature map

Output
feature map

𝑥𝑖
𝑠

𝑦𝑖
𝑠 = 𝒯𝜃 𝐺𝑖 = 𝐴𝜃

𝑥𝑖
𝑡

𝑦𝑖
𝑡

1

2 × 3

[1] M. Jaderberg et al. "Spatial transformer networks",2015

[1][1]
[1]



Non-Euclidean (Point Clouds)

• PointNet
• T-Net

• 3D ver. of Spatial Transformer Networks in 2D

• Not need sampling grid (There are no gird structure in 3D)

• Directly apply transformation to each point cloud

• Output parameter

• 3 × 3 in first T-Net

• 64 × 64 in second T-Net

T-Net
(input feature : 3)

T-Net
(input feature : 64)

[1]

[1] C. R. Qi, "PointNet: Deep Learning on Point Sets for 3D Classification and Segmentation", 2016



Non-Euclidean (Point Clouds)

• PointNet++  [1]
• Comparison b/w PointNet

• Detailed information is kept

• Can treat different density of point cloud

Concatenation of multi-resolution [1] C. R. Qi et al. "Pointnet++: Deep hierarchical feature learning on point sets in a metric space", 2017

[1]



Non-Euclidean (Point Clouds)

• PointNet++
• Set abstraction

• Grouping in one scale + feature extraction

• Sampling Layer : Extraction of sampling points by farthest point sampling (FPS) 

• Grouping Layer : Grouping points around sampling points

• PointNet Layer : Applying PointNet

Sampling Layer Grouping Layer

𝑟



Non-Euclidean (Point Clouds)

• PointNet++
• Point Feature Propagation for segmentation

• Interpolation : interpolation from k neighbor points

• Concatenation 

Interpolation

𝑓 𝑗 𝑥 =
 𝑖=1
𝑘 𝑤𝑖 𝑥 𝑓𝑖

(𝑗)

 𝑖=1
𝑘 𝑤𝑖 𝑥

𝑘 = 3

𝑤𝑖 𝑥 =
1

𝑑 𝑥, 𝑥𝑖
2

𝑑

𝑥
𝑥𝑖

𝑥

feature
weight

Inverse of distance[1] C. R. Qi et al. "Pointnet++: Deep hierarchical feature learning on point sets in a metric space", 2017

[1]



Non-Euclidean (Point Clouds)

• PointNet++
• Single scale grouping

• Multi scale/resolution grouping
• Combination of features from different scales

• Robust for non-uniform sampling density

• Modifying architecture in set abstraction level

𝐿𝑖−1 Level

𝐿𝑖 Level

Original Points

multi-resolution grouping (MRG)

Concatenation of information of multi-resolutionHigh computational cost

multi-scale grouping (MSG)

Recommendation

[1] C. R. Qi et al. "Pointnet++: Deep hierarchical feature learning on point sets in a metric space", 2017

[1] [1]



Non-Euclidean (Point Clouds)

• PointNet++
• Detail of architecture

• Note: #vertex is fixed 

𝑆𝐴 512, 0.2, 64, 64, 128 → 𝑆𝐴 128, 0.2, 64, 64, 128 → 𝑆𝐴 256,512,1024

#𝑖𝑛𝑝𝑢𝑡 𝑣𝑒𝑟𝑡𝑒𝑥: 1024

→ 𝐹𝐶 512,0.5 → 𝐹𝐶 256,0.5 → 𝐹𝐶(𝐾)
class

→ 𝐹𝑃 256, 256 → 𝐹𝑃 256,128 → 𝐹𝑃(128,128,128,128, 𝐾)

per point segmentation

1024/2 512/4

Architecture for classification 
and part segmentation of ModelNet
using single scale grouping

𝑆𝐴 𝐾, 𝑟, ℓ1, ⋯ , ℓ𝑑

#vertex radius Pointnet (#FC:d)

𝑆𝐴 ℓ1, ⋯ , ℓ𝑑

Set abstraction level

Global Set 
abstraction level #FC:d

Convert single vector by maxpooling

For classification

For part segmentation

Same in cls. and seg.

𝐹𝐶 ℓ, 𝑑𝑝

𝐹𝑃 ℓ1, ⋯ , ℓ𝑑

Fully Connected

Feature Propagation

Channel
Ratio of dropout

#FC:d



Non-Euclidean (Point Clouds)

• PointNet++
• Detail of architecture

• Note: #vertex is fixed 

#𝑖𝑛𝑝𝑢𝑡 𝑣𝑒𝑟𝑡𝑒𝑥: 1024

Architecture classification of ModelNet using multi-resolution grouping (MRG)

𝑆𝐴 512, 0.2, 64, 64, 128 → 𝑆𝐴 64, 0.4, 128, 128, 256

𝑆𝐴 512, 0.4, 64, 128, 256

𝑆𝐴 64, 128, 256,512

𝑆𝐴 256,512,1024
Concat.

Concat.

→ 𝐹𝐶 512,0.5 → 𝐹𝐶 256,0.5 → 𝐹𝐶(𝐾) Same as single scale grouping

class



Non-Euclidean (Point Clouds)

• Dynamic Graph CNN (DGCNN) [1]
• PointNet + w/ Edge Conv.

• Edge Conv.
• Create local edge structure dynamically (not fixed in each layer)

Edge Conv.

PointNet+ w/ Edge Conv.

𝒙𝑖′ =  

𝑗∈𝑁(𝑖)

ℎ𝚯(𝒙𝑖 , 𝒙𝑗 − 𝒙𝑖)

global local

Search neighbors in feature space by kNN

[1] Y. Wang, "Dynamic Graph CNN for Learning on Point Clouds", 2018

[1]

[1]



Non-Euclidean (Point Clouds)

• PointCNN [1]
• Downsampling information from neighborhoods into fewer representative 

points 

Χ-Conv.

Lower resolution, deeper channels

Decreasing #representative points, deeper channels

𝒙𝑖′ = 𝐶𝑜𝑛𝑣 𝑲, 𝛾Θ 𝑷𝑖 − 𝒑𝑖 × ℎΘ 𝑷𝑖 − 𝒑𝑖 , 𝒙𝑖

Input feature

MLP applied 
individually on each point
like PointNet

Kernel
Concatenation

[1] Y. Li et al. "PointCNN: Convolution On X-Transformed Points", 2018

[1]

[1]



Non-Euclidean (Mesh)

• Representation of 3D data

[1] E. Ahmed et al, "A survey on Deep Learning Advances on Different 3D Data Representations", 2018

[1]



Non-Euclidean (Mesh)

• Each Non-Euclidean Method (Mesh)

Method Application Link

MeshCNN Classification
Segmentation

Paper
GitHub (PyTorch)

MeshNet Classification Paper
GitHub (PyTorch)

https://arxiv.org/abs/1809.05910
https://github.com/ranahanocka/MeshCNN
https://arxiv.org/abs/1811.11424
https://github.com/iMoonLab/MeshNet


Non-Euclidean (Mesh)

• MeshCNN [1]
• Edge collapse by pooling

• Can apply only the manifold mesh

use in segmentation

EdgeEdge collapse by pooling

Input feature

Angle

Length

Pooling / Unpooling

[1] R. Hanocka et al., "MeshCNN: A Network with an Edge", 2018

[1]

[1] [1]



Non-Euclidean (Mesh)

• MeshNet
• Input feature

• Center, corner, normal, neighbor index

Information of neighborhood of face

Mesh Conv.
(Combination + Aggregation)

[1] Y. Feng et al. "MeshNet: Mesh Neural Network for 3D Shape Representation", 2018

[1]

[1]

[1]



Non-Euclidean (Graph)

• Representation of 3D data

[1] E. Ahmed et al, "A survey on Deep Learning Advances on Different 3D Data Representations", 2018

[1]



Non-Euclidean (Graph)

• Each Non-Euclidean Method (Graph)
• Spectral / Spatial Method

Spectral Spatial

Euclidean
(1D)

Non-Euclidean
(Manifold)

∆𝜙𝑖 = 𝜆𝑖𝜙𝑖

𝜙𝑖 = 𝑒𝑖𝜔𝑥, 𝜆𝑖 = 𝜔2

Local coordinate

𝐷𝑗 𝑥 𝑓 =  

𝑦∈𝑁(𝑥)

𝜔𝑗(𝒖 𝑥, 𝑦 )𝑓(𝑦)

𝑓 ∗ 𝑔 𝑥 =  

𝑗=1

𝐽

𝑔𝑗𝐷𝑗 𝑥 𝑓

Patch Operator

Pseudo-coordinate

Convolution

Generalization of 
Fourier basis

[1] M. M. Bronstein et al., "Geometric deep learning: going beyond Euclidean data", 2016
[2] J. Masci et al. "Geodesic convolutional neural networks on Riemannian manifolds", 2015
[3] M. Fey et al. "SplineCNN: Fast Geometric Deep Learning with Continuous B-Spline Kernels", 2017

[1] [1]

[3]

[2]



Non-Euclidean (Graph)

• Each Non-Euclidean Method (Graph)
• Spatial method is more useful than spectral method.

Method Structure Feature

Spectral • Fourier basis in manifold
• Laplacian eigenvalue/eigenvector

• Spectral filter coefficients is base dependent in some 
method 

• No locality in some method
• High computational cost

Spatial • Create local coordinate 
• Patch operator + Conv.

• Locality
• Efficient computational cost

※Some equations from following pages are referred to the documents in PyTorch-geometric. 
(https://pytorch-geometric.readthedocs.io/en/latest/modules/nn.html)
I will explain PyTorch-geometric in later page.

https://pytorch-geometric.readthedocs.io/en/latest/modules/nn.html


Non-Euclidean (Graph)

• Each Non-Euclidean Method (Graph)
• Spectral, Spectral free

Method Method Application Link

Spectral CNN Spectral Graph Paper

Chebyshev Spectral 
CNN
(ChebNet)

Spectral free Graph Paper
GitHub (TensorFlow)
PyTorch-geometric 
(ChebConv)

Graph Convolutional 
Network
(GCN)

Spectral free Graph Paper
PyTorch-geometric 
(GCNConv)

Graph Neural Network
(GNN)

Spectral free Graph Paper

https://arxiv.org/abs/1312.6203
https://arxiv.org/abs/1606.09375
https://github.com/mdeff/cnn_graph
https://arxiv.org/abs/1609.02907
https://persagen.com/files/misc/scarselli2009graph.pdf


Non-Euclidean (Graph)

• Spectral CNN [2]
• cannot use different shape

• Spectral filter coefficients is base dependent

• High computational cost

• No locality

∆𝑓 𝑖 ∝  

𝑖,𝑗 ∈ℰ

𝜔𝑖𝑗(𝑓𝑖 − 𝑓𝑗)Laplacian

Different shape 
-> different basis -> different result 

𝒇ℓ
𝑜𝑢𝑡 = 𝜉  

ℓ′=1

𝑝

𝚽𝑘
 𝑮ℓ,ℓ′𝚽𝑘

𝑇𝒇ℓ′
𝑖𝑛

Laplacian eigenvectorReLU
[1] M. M. Bronstein et al., "Geometric deep learning: going beyond Euclidean data", 2016
[2] J. Bruna et al. "Spectral Networks and Locally Connected Networks on Graphs", 2013

[1]
[1]



Non-Euclidean (Graph)

• Chebyshev Spectral CNN (ChebNet) [1]
• Not calculate Laplacian eigenvectors directly

• Locality (K hops)

• Approximate filter as polynomial

• Graph Convolutional Network (GCN) [2]
• Special ver. of ChebNet (𝐾 = 2)

𝑋′ =  

𝑘=0

𝐾−1

𝑍(𝑘) ⋅ Θ(𝑘)

𝑍(0) = 𝑋

𝑍(1) =  𝐿 ⋅ 𝑋

𝑍(𝑘) = 2 ⋅  𝐿 ⋅ 𝑍 𝑘−1 − 𝑍(𝑘−2)

 𝐿:scaled and normalized Laplacian
[1] M. Defferrard et al. "Convolutional Neural Networks on Graphs with Fast Localized Spectral Filtering", 2016
[2] T. N. Kipf et al. "Semi-Supervised Classification with Graph Convolutional Networks", 2016



Non-Euclidean (Graph)

• Each Non-Euclidean Method (Graph)
• Charting

Application Link

Geodesic CNN Mesh
Shape retrieval / 
correspondence

Paper

Anisotropic CNN Mesh / point cloud
Shape correspondence

Paper

MoNet Graph / mesh / point cloud
Shape correspondence

Paper
PyTorch-geometric (GMMConv)

SplineCNN Graph / Mesh
Classification
Shape correspondence

Paper
GitHub (PyTorch)
PyTorch-geometric 
(SplineConv)

FeaStNet Graph / Mesh
Shape correspondence
Segmentation

Paper
PyTorch-geometric (FeaStConv)

https://arxiv.org/abs/1501.06297
https://arxiv.org/abs/1605.06437
https://arxiv.org/abs/1611.08402
https://arxiv.org/abs/1711.08920
https://github.com/rusty1s/pytorch_spline_conv
https://arxiv.org/abs/1706.05206


Non-Euclidean (Graph)

• Geodesic CNN (GCNN)[1] ⊂ Anisotropic CNN (ACNN)[2] ⊂ MoNet [3]

MoNet

𝐷𝑗 𝑥 𝑓 =  

𝑦∈𝑁(𝑥)

𝜔𝑗(𝒖 𝑥, 𝑦 )𝑓(𝑦)

𝑓 ∗ 𝑔 𝑥 =  

𝑗=1

𝐽

𝑔𝑗𝐷𝑗 𝑥 𝑓

Patch Operator

Pseudo-coordinate

Convolution

𝜔𝑗 𝒖 = exp −
1

2
𝒖 − 𝜇𝑗

T
Σj
−1(𝒖 − 𝜇𝑗)

𝜔𝑗 𝒖 = exp −
1

2
𝒖𝑇𝑹𝜃𝑗

 𝛼 0
0 1

𝑹𝜃𝑗

𝑇 𝒖ACNN

GCNN 𝜔𝑗 𝒖 = exp −
1

2
𝒖 −  𝑢𝑗

T 𝜎𝜌
2 0

0 𝜎𝜃
2

(𝒖 −  𝑢𝑗)

Rotation of 𝜃 to the maximum 
curvature direction The degree of anisotropy

covariance (radius, angle direction)

Learning parameters
[1] J. Masci et al. "Geodesic convolutional neural networks on Riemannian manifolds", 2015
[2] D Boscaini et al. "Learning shape correspondence with anisotropic convolutional neural networks", 2016
[3] F. Monti et al. "Geometric deep learning on graphs and manifolds using mixture model CNNs", 2016
[4] M. Fey et al. "SplineCNN: Fast Geometric Deep Learning with Continuous B-Spline Kernels", 2017

[1]
[4]



Non-Euclidean (Graph)

• Geodesic CNN (GCNN)
• Create local coordinate

• Do not verify the meaningful chart (need to create small radius chart)

• Anisotropic CNN (ACNN)
• Fourier basis is based on anisotropic heat diffusion eq.

• MoNet
• Learn filter as parametric kernel

• Generalization of geodesic CNN and anisotropic CNN



Non-Euclidean (Graph)

• SplineCNN [1]
• Filter based on B-spline function

• Efficient computational cost

𝒙𝑖′ =
1

|𝑁 𝑖 |
 

𝑗∈𝑁(𝑖)

𝒙𝑖 ⋅ ℎ𝚯(𝒆𝑖,𝑗)

Weighted B-Spline basis

[1] M. Fey et al. "SplineCNN: Fast Geometric Deep Learning with Continuous B-Spline Kernels", 2017

[1]



Non-Euclidean (Graph)

• FeaStNet [1]
• Dynamically determine relation b/w filter weight and local graph of a node

𝒙𝑖′ =
1

|𝑁 𝑖 |
 

𝑗∈𝑁(𝑖)

 

𝑚=1

𝑀

𝑞𝑚 𝒙𝑖 , 𝒙𝑗 𝑾𝑚𝒙𝑗

Filter
(e.g. 𝑀 = 3 × 3 = 9)

Euclidean FeaStNet

Weight

Input Output Input Output

#neighbor 
(e.g. 𝑁 = 6)

𝑞𝑚 𝒙𝑖 , 𝒙𝑗 = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥𝑗 𝒖𝒎
𝑻 𝒙𝒊 − 𝒙𝒋 + 𝑐𝑚

𝒙𝑖′ =  

𝑚=1

𝑀

𝑾𝑚𝒙𝑛(𝑚,𝑖)

pixel
D input featureE output feature

[1] N Verma et al. "FeaStNet: Feature-Steered Graph Convolutions for 3D Shape Analysis", 2017

[1][1]



Non-Euclidean (Graph)

• PyTorch-geometric
• https://github.com/rusty1s/pytorch_geometric

• Library based on PyTorch

• For point cloud, mesh (not only graph)

• Include Point cloud, graph-type approach code
• PointNet++, DGCNN, PointCNN

• ChebNet, GCN, MoNet, SplineCNN, FeaStNet

• Easy to get the famous sample data and transform same data format
• ModelNet, ShapeNet, etc.

• Many example and benchmark

https://github.com/rusty1s/pytorch_geometric


Accuracy

• Accuracy (Classification)
• around 90% in any method (except VoxNet)

Method “ModelNet40”
Overall Acc. [%] / Mean 
class Acc. [%]

“SHREC”
Overall Acc. [%] 

VoxNet 85.9 / 83.0 −

MVCNN − / 90.1 𝟗𝟔. 𝟎𝟗

PointNet 89.2 / 86.0 −

PointNet++ 90.7 / − −

DGCNN 𝟗𝟐. 𝟗 / 𝟗𝟎. 𝟐 −

PointCNN 92.2 / 88.1 −

MeshNet − / 91.9 −

MeshCNN − / − 91.0

※Please refer the detail in each paper (mentioned in each page)



Accuracy

• Accuracy (Segmentation)

Method Part segmentation
“ShapeNet”
mIoU (mean per-class 
part-averaged IoU) [%]

Part 
segmentation
“ScanNet”
Acc. [%]

Part 
segmentation
“COSEG”
Acc. [%]

Scene 
segmentation
“S3DIS”
Acc. [%] / 
mIoU [%]

Human body 
segmentation
“including 
SCAPE, FAUST 
etc.”
Acc. [%]

PointNet 80.4 (57.9 − 95.3) 73.9 54.4 − 91.5 78.6 / − 90.77

PointNet++ 81.9 (58.7 − 95.3) 84.5 79.1 − 98.9 − / − −

DGCNN 82.3 (𝟔𝟑. 𝟓 − 𝟗𝟓. 𝟕) − − 𝟖𝟒. 𝟏 / 56.1 −

PointCNN 𝟖𝟒. 𝟔 𝟖𝟓. 𝟏 − − / 𝟔𝟓. 𝟑𝟗 −

MeshCNN − − 𝟗𝟕. 𝟓𝟔 − 𝟗𝟗. 𝟔𝟑 − / − 𝟗𝟐. 𝟑𝟎

FeaStNet 81.5 − − − / − −

※Please refer the detail in each paper (mentioned in each page)



Dataset

• 3D Dataset

Contents Data Format Purpose PyTorch-geometric

ModelNet10/40 3D CAD Model
(10 or 40 classes)

Mesh (.OFF) Classification ModelNet

ShapeNet 3D Shape Point Cloud (.pts) Segmentation ShapeNet

ScanNet Indoor Scan Data Mesh (.ply) Segmentation -

S3DIS
(original, .h5)

Indoor Scan Data Point Cloud Segmentation S3DIS

ScanNet：registration required
S3DIS : registration required (for original)

http://modelnet.cs.princeton.edu/
https://shapenet.cs.stanford.edu/iccv17/
http://www.scan-net.org/#code-and-data
http://buildingparser.stanford.edu/dataset.html#Download
https://shapenet.cs.stanford.edu/media/indoor3d_sem_seg_hdf5_data.zip


Dataset

• 3D Dataset

Contents Data Format Purpose PyTorch-geometric

SHREC many type for each 
contest

- Retrieval -

SHREC2016 Animal, Human
(Part Data)

Mesh (.OFF) Correspondence SHREC2016

TOSCA Animal, Human Mesh
(same #vertices at 
each category, 
separate file of 
vertices and 
triangles)

Correspondence TOSCA

PCPNet 3D Shape Point Cloud (.xyz)
(Including normal, 
curvature files.)

Estimation of local 
shape (Normal, 
curvature)

PCPNet

FAUST Human body Mesh Correspondence FAUST

FAUST(Note) : registration required

http://www.shrec.net/
http://www.dais.unive.it/~shrec2016/dataset.php
http://tosca.cs.technion.ac.il/book/resources_data.html
http://geometry.cs.ucl.ac.uk/projects/2018/pcpnet/
http://faust.is.tue.mpg.de/


Material

• Material of 3D deep learning (3D / point cloud)

Paper Comment

A survey on Deep Learning Advances on 
Different 3D Data Representations

• Review of 3D Deep Learning
• Easier to read it
• Written from point of view about Euclidean 

and Non-Euclidean method

Paperwithcode • Paper w/ code about 3D

Point Cloud Deep Learning Survey Ver. 2 • Deep learning for point cloud
• Survey of many papers

https://arxiv.org/abs/1808.01462
https://paperswithcode.com/task/3d
https://speakerdeck.com/nnchiba/point-cloud-deep-learning-survey-ver-2


Material

• Material of 3D deep learning (graph)

Paper Comment

Geometric deep learning: going beyond 
Euclidean data

• Review of geometric deep learning

Geometric Deep Learning • summary of paper and code about geometric 
deep learning

Geometric Deep Learning on Graphs and 
Manifolds (NIPS2017)

• Presentation (youtube) about geometric deep 
learning

https://arxiv.org/abs/1611.08097
http://geometricdeeplearning.com/
https://www.youtube.com/watch?v=LvmjbXZyoP0


Summary

• There are many methods of 3D deep learning.

• Two main method 
• Euclidean vs Non-Euclidean

• Euclidean Method
• Projections / Multi-View / Voxel

• Non-Euclidean Method
• Point Cloud / Mesh / Graph

• Each method have merit and demerit.
• We need to choose the better method for each data type and application.

• The research about 3D deep learning is growing.



Appendix

• Appendix
• Mesh Generation

• Laplacian on Graph

• Correspondence



Appendix : Mesh Generation

• Mesh Generation
• In this material, I have summarized these materials.

Link Contents

点群面張り（精密工学会） • Surface reconstruction

メッシュ処理（精密工学会） • Mesh processing

CV勉強会＠関東発表資料 点群再構成に関するサーベイ • Survey of point cloud reconstruction

http://precipedia.jspe.or.jp/wiki/index.php?title=%E7%82%B9%E7%BE%A4%E9%9D%A2%E5%BC%B5%E3%82%8A
http://precipedia.jspe.or.jp/wiki/index.php?title=%E3%83%A1%E3%83%83%E3%82%B7%E3%83%A5%E5%87%A6%E7%90%86
https://www.slideshare.net/FujimotoKeisuke/20190414-point-cloud-reconstruction-survey-140757963


Appendix : Mesh Generation

• Difficulty of Mesh Generation

Processing Difficulty

Pre-processing Reduction of  Noise / Missing / Abnormal value / density difference of vertices

Post-processing Mesh smoothing / hole filling

Ground Truth Noise 
/ Abnormal value

Missing / density 
difference of vertices

Mesh smoothing 
/ hole filling



Appendix : Mesh Generation

• Kinds of Mesh Generation

Kind Feature Classification of the method

Direct Triangulation Direct mesh generation form point cloud Explicit method

Surface Smoothness Smooth surface mesh from point cloud Implicit method

Direct Triangulation Surface Smoothness



Appendix : Mesh Generation

• Classification of the method
• In general, it is easier to use the implicit method, since there are noise of point 

cloud.

Classification of the method Information to use Influence of noise and density of 
vertices

Guarantee of accuracy

Explicit method Vertices Large
(error of vertices = error of 
meshes)

◎

Implicit method Meshes based on isosurface of 
function fields which is 
calculated from vertices

Small 〇



Appendix : Mesh Generation

• Kinds of Mesh Generation (Detail)
• Direct Triangulation (example of built-in function in MeshLab)

Method Feature

Voronoi-Based Surface Reconstruction Creation of Delaunay diagram adding the vertices 
using Voronoi diagram 

Ball-Pivoting Algorithm Roll the ball over the point cloud and generate mesh 
from the point cloud located within a certain distance

http://compbio.mit.edu/publications/C01_Amenta_Siggraph_98.pdf
https://lidarwidgets.com/samples/bpa_tvcg.pdf


Appendix : Mesh Generation

• Voronoi-Based Surface Reconstruction
• Voronoi diagram

• Region divided by the bisector of each vertices (in 2D)

• Delaunay triangulation
• Triangulation by connection of vertices 

bisector

Vertices (S)

Voronoi
Vertices (V) Delaunay triangulation of S and V

(black + red line)

Example of 2D
Surface 
(black line)

[1] N. Amenta et al. "A New Voronoi-Based Surface Reconstruction Algorithm", 1998

[1] [1]



Appendix : Mesh Generation

• Ball-Pivoting Algorithm

Not created

Close point cloudSparse data

Not created

Ideal data

[1] F Bernardini et al.  "The Ball-Pivoting Algorithm for Surface Reconstruction", 1999

[1]



Appendix : Mesh Generation

• Kinds of Mesh Generation (Detail)
• Surface Smoothness (example of built-in function in MeshLab)

Method Feature

Signed distance function
+ Marching Cubes

Creation of Signed distance function by using the 
distance b/w vertices and surface
+ Mesh generation by using Marching Cubes

Screened Poisson surface reconstruction
(Poisson surface reconstruction)

Distinguish b/w inside and outside of surface by 
using Poisson eq.

http://hhoppe.com/recon.pdf
http://hhoppe.com/recon.pdf
http://www.cs.jhu.edu/~misha/MyPapers/ToG13.pdf
http://hhoppe.com/poissonrecon.pdf


Appendix : Mesh Generation

• Signed distance function + Marching Cubes

Oriented tangent planes Estimated signed distance
Output of 
modified marching cubes

𝑓 𝒑 = 𝒑 − 𝒐 ⋅ 𝒏 𝑓 𝒑 > 0
→ 𝑜𝑢𝑡𝑠𝑖𝑑𝑒

𝑓 𝒑 < 0
→ 𝑖𝑛𝑠𝑖𝑑𝑒

𝒑

𝒑

𝒐
𝒏

𝑓 𝒑 = 0 → 𝑠𝑢𝑟𝑓𝑎𝑐𝑒

[1] H. Hoppe et al. "Surface Reconstruction from Unorganized Points", 1992

[1]



Appendix : Mesh Generation

• Screened Poisson surface reconstruction
• get Indicator Function by solving the Poisson eq. 

∆𝜒 ≡ ∇ ⋅ ∇𝜒 = ∇ ⋅ 𝑽

Poisson eq.

Poisson surface reconstruction
Screened Poisson 
surface reconstruction

Complement 
b/w point cloud

[1] M. Kazhdan et al. "Poisson Surface Reconstruction", 2006

[2]
[1]

[2] M. Kazhdan et al.  "Screened Poisson Surface Reconstruction", 2013



Appendix : Laplacian on Graph

• Laplacian on Graph [1]

∆𝑓 𝑖 =
1

𝑎𝑖
 

𝑖,𝑗 ∈ℰ

𝜔𝑖𝑗(𝑓𝑖 − 𝑓𝑗)Laplacian

(𝒱, ℰ)Graph (undirected)

𝒱 = {1,⋯ , 𝑛}

ℰ ⊆ 𝒱 × 𝒱

𝑎𝑖

𝜔𝑖𝑗

weight

div. 𝑑𝑖𝑣 𝐹 𝑖 =
1

𝑎𝑖
 

𝑗: 𝑖,𝑗 ∈ℰ

𝜔𝑖𝑗𝐹𝑖𝑗

Grad. ∇𝑓 𝑖𝑗 = 𝑓𝑖 − 𝑓𝑗

Mesh

𝜔𝑖𝑗 =
−ℓ𝑖𝑗

2 + ℓ𝑗𝑘
2 + ℓ𝑘𝑖

2

8𝑎𝑖𝑗𝑘
+
−ℓ𝑖𝑗

2 + ℓ𝑗ℎ
2 + ℓℎ𝑖

2

8𝑎𝑖𝑗ℎ
=
1

2
(cot 𝛼𝑖𝑗 + cot 𝛽𝑖𝑗)

𝑎𝑖 =
1

3
 

𝑗𝑘: 𝑖,𝑗,𝑘 ∈ℱ

𝑎𝑖𝑗𝑘

𝑎𝑖𝑗𝑘 = 𝑠𝑖𝑗𝑘(𝑠𝑖𝑗𝑘 − ℓ𝑖𝑗)(𝑠𝑖𝑗𝑘 − ℓ𝑗𝑘)(𝑠𝑖𝑗𝑘 − ℓ𝑘𝑖)
1/2

𝑠𝑖𝑗𝑘 =
1

2
(𝑎𝑖𝑗 + 𝑎𝑗𝑘 + 𝑎𝑘𝑖)

𝑓: 𝒱 → ℝ, 𝐹: ℰ → ℝ

∆≡ −𝑑𝑖𝑣 ∇

→Laplacian 
eigenvalues 𝜆 > 0

[1] M. M. Bronstein et al., "Geometric deep learning: going beyond Euclidean data", 2016

[1]



Appendix : Laplacian on Graph

• Laplacian on Graph [1]

Δ𝒇 = 𝑨−1 𝑫−𝑾 𝒇

𝒇 = 𝑓1, ⋯ , 𝑓𝑛
𝑇

𝑾 = (𝜔𝑖𝑗)

𝑨 = 𝑑𝑖𝑎𝑔(𝑎1, ⋯ , 𝑎𝑛)

𝑫 = 𝑑𝑖𝑎𝑔  

𝑗:𝑗≠𝑖

𝜔𝑖𝑗

Laplacian ∆ Condition

Unnormalized graph 
Laplacian

∆= 𝑫−𝑾 𝐴 = 𝐼

Normalized 
Symmetry Laplacian

∆= 𝑰 − 𝑫−
𝟏
𝟐𝑾𝑫

𝟏
𝟐

𝐴 = 𝐷
+ Normalization

Random walk 
Laplacian

∆= 𝑰 − 𝑫−1𝑾 𝐴 = 𝐷

Laplacian (as matrix)

[1] M. M. Bronstein et al., "Geometric deep learning: going beyond Euclidean data", 2016



Appendix : Laplacian on Graph

• Laplacian on Graph [1]
• Convolution 

(𝑓 ∗ 𝑔)(𝑥) =  

𝑖≥0

 𝑓𝑖  𝑔𝑖𝜙𝑖(𝑥)

𝒇 ∗ 𝒈 = 𝚽𝑑𝑖𝑎𝑔  𝑔 𝚽T𝐟

𝒇 = 𝑓1, ⋯ , 𝑓𝑛
𝑇

 𝒈 = (  𝑔1, ⋯ ,  𝑔𝒏)

𝚽 = (𝜙1, ⋯ , 𝜙𝑛)

Matrix

Conv.

[1] M. M. Bronstein et al., "Geometric deep learning: going beyond Euclidean data", 2016



Appendix :Correspondence

• Correspondence [1]

Query Reference input

𝑥𝑖 (𝑦1, ⋯ , 𝑦𝑁)

label

Each query vertex has labels 
as all reference vertices

Output
(Probability)

Correct Label

Output
(Probability)

(𝑝1, 𝑝2, ⋯ , 𝑝𝑁)

(1,0,⋯ , 0)

One-hot vector

Loss

[1] M. M. Bronstein et al., "Geometric deep learning: going beyond Euclidean data", 2016

[1]




