

Arithmer Confidential

Working Group Survey on Self-Supervised Image Segmentation

Arithmer R3 Div. R3 - Yann Le Guilly

2020/07/02

Self-Introduction: Yann Le Guilly

- Education
 - Undergraduate in physics, University of Rennes 1 (France)
 - Master's degree in applied mathematics, IRMAR laboratory, University of Rennes 1 (France)
 - Research Student at Tokyo Institute of Technology, Murata Laboratory
- Former Job
 - Machine Learning Engineer at Abeja, Inc.
 - Development of AI-based product and Proofs of concept
- Current Job
 - Machine Learning Engineer
 - Development of AI-based product and Proofs of concept

Agenda

- Introduction
 - Image Segmentation
 - Problems
 - Self-supervised learning
 - \circ Content of this presentation
- Survey
 - Pseudo Labeling
 - Class Activation Map
 - Image Depth Information
 - How about using videos
- Some comments

Introduction: Image Segmentation

Introduction: Problems

- very hard to annotate (=expensive)
 - pixel-wise annotation
 - different types of objects
 - boundaries are often blurry
- easy to make mistake
 - lots of unclear cases
 - Need to keep focus for long time

How can we change this situation?

CVAT: open source annotation tool

Introduction: Self-supervised learning

- Research topic pushed by "godfathers of AI" and specially by Yann Le Cun
- Pre-train a feature extractor in an unsupervised way then train the classifier with annotated data
- Reach SOTA with only 10% of labels in the last papers (starting to go beyond)
- Methods coming from NLP

How Much Information is the Machine Given during Learning?

- "Pure" Reinforcement Learning (cherry)
- The machine predicts a scalar reward given once in a while.
- A few bits for some samples

Supervised Learning (icing)

- The machine predicts a category or a few numbers for each input
- Predicting human-supplied data
- ► 10→10,000 bits per sample

Self-Supervised Learning (cake génoise)

- The machine predicts any part of its input for any observed part.
- Predicts future frames in videos
- Millions of bits per sample
 © 2019 IEEE International Solid-State Circuits Conference

1.1: Deep Learning Hardware: Past, Present, & Future

Slide from Yann Le Cun's (recurrent) presentation

©2020 Arithmer.Inc. 当スライド(ページ)内の文章・画像等の無断転載はご遠慮ください。引用する場合には引用の要件を遵守してください。

3

Y. LeCun

Introduction: Content of this presentation

- 3 very different directions
 - Using pseudo labelling
 - Using Activation Map (like grad-CAM)
 - Using depth information
 - Leverage frames in videos

Spoiler: there is no self-supervised learning semantic segmentation method that is very convincing...

- High level explanations
- For more details, I provided notes for some papers
- For even more details, please read the original papers

Arithmer Confidentia

Pseudo Labeling: Introduction

- Usually use softmax to differentiate "strong prediction" to "weak prediction"
- Keep only "strong prediction" as pseudo-labels
- popular research topic

Issue:

- Softmax is not the best way since it takes the best score without considering other scores (which might be promising also)

Simple illustration on what is pseudo labeling

Pseudo Labeling: Entropy-guided (1/2)

My notes:

https://arithmer.co.jp/wp-content/uploads/pdf/notes_ESL_Entropy-guided_Self-supervised_Learning_for_Domain_Adaptation_in_Semantic_Segmentation.pdf

Original paper: https://arxiv.org/abs/2006.08658v1

Repo: <u>https://github.com/liyunsheng13/BDL</u>

Arithmer Confidential

Pseudo Labeling: Entropy-guided (2/2)

	$GTA5 \rightarrow Cityscapes$																				
Method	Self-Training	road	sidewalk	building	wall	fence	pole	light	sign	veg	terrain	sky	person	rider	car	truck	bus	train	mbike	bike	mIoU
AdaptSegNet [22]	SSL ESL	79.7 80.3 81.3	16.4 17.5 21.7	76.1 78.0 78.5	18.8 19.0 20.6	12.7 19.1 21.2	24.8 26.2 28.0	33.3 36.3 37.3	20.8 22.1 24.8	82.0 81.5 81.1	17.1 17.0 16.1	73.4 72.4 73.7	55.8 55.5 56.0	27.3 28.3 29.1	62.3 62.1 64.1	37.2 37.2 34.0	30.0 34.9 35.8	1.4 0.9 0.9	30.8 31.4 31.4	15.1 20.2 19.2	37.6 38.9 39.7
ADVENT [23]	SSL ESL	89.9 89.6 90.0	36.5 35.4 38.6	81.6 82.0 82.9	29.2 29.7 29.7	25.2 25.6 28.3	28.5 31.9 33.2	32.3 36.6 38.5	22.4 25.6 25.8	83.9 84.3 83.9	34.1 29.7 25.8	77.1 75.2 78.3	57.4 59.9 60.0	27.9 29.9 29.9	83.7 84.7 85.9	29.4 40.4 35.5	39.1 42.6 43.3	1.5 0.1 1.1	28.4 32.7 29.1	23.3 30.9 32.0	43.7 45.6 45.9
BDL [14] (step 1)	- SSL ESL SSL + IT ESL + IT	88.2 87.3 88.4 90.2 90.3	41.3 39.4 38.6 47.5 46.3	83.2 83.7 83.9 84.7 84.8	28.8 30.2 30.4 33.6 32.7	21.9 24.9 25.9 26.0 26.9	31.7 33.5 32.8 33.4 33.5	35.2 41.0 41.5 39.6 39.9	28.2 30.8 30.9 33.1 34.8	83.0 83.3 82.8 84.1 83.9	26.2 27.9 23.5 33.8 31.2	83.2 83.4 85.3 84.2 85.0	57.6 58.7 59.4 59.9 59.2	27.0 29.9 30.7 31.5 30.3	77.1 75.2 78.6 79.8 79.8	27.5 28.4 30.8 28.2 28.4	34.6 33.3 37.3 36.3 43.4	2.5 1.9 4.5 0.8 1.7	28.3 30.1 28.5 31.5 28.1	36.1 33.0 33.1 31.7 36.2	44.3 45.0 45.6 46.8 47.2
BDL [14] (step 2)	- SSL ESL SSL + IT ESL + IT	91.0 89.7 90.0 90.3 90.2	44.8 39.6 39.2 43.6 43.9	83.9 84.1 84.3 84.4 84.7	32.0 30.2 32.0 32.3 35.9	24.6 28.4 31.1 28.8 28.5	29.5 31.9 31.7 31.5 31.2	34.4 39.0 39.2 37.1 37.9	30.8 29.4 32.1 34.2 34.0	84.3 83.9 83.6 84.7 84.5	39.3 35.1 31.5 42.3 42.2	83.9 85.7 84.9 84.0 83.9	56.8 58.0 58.5 58.2 59.0	29.7 31.6 31.7 32.3 32.2	83.3 80.8 82.9 82.5 81.8	35.4 36.2 39.5 35.7 36.7	49.8 46.6 48.4 48.9 49.4	0.2 0.5 0.9 1.9 1.8	27.3 28.9 30.5 30.5 30.6	37.1 33.7 33.0 31.7 34.1	47.3 47.0 47.6 48.2 48.6

Model Pre-trained on GTA5 dataset and method used on Cityscapes: consistently improves the final accuracy but by less than 1% mIoU State-of-the-art for fully supervised learning: 85.1% (IT = image translation)

©2020 Arithmer.Inc. 当スライド(ページ)内の文章・画像等の無断転載はご遠慮ください。引用する場合には引用の要件を遵守してください。

Class Activation Map: Introduction

original paper: https://arxiv.org/abs/1610.02391

- Uses gradient information flow to the neurons of a specific CNN layer to identify regions of activation
- Step forward interpretability
- Work from 2017 (last version from last December)

Class Activation Map: Equivariant Attention Mechanism

My notes:

https://arithmer.co.jp/wp-content/uploads/pdf/notes_Self-supervised_Equivariant_Attention_Mechanism_for_Weakly_Supervised_Semantic_Segmentation.pdf
Original paper: https://arxiv.org/abs/2004.04581
Repo: https://github.com/YudeWang/SEAM

- 1. Need image level annotation (class)
- 2. 3 loss functions combines (ECR, ER and cls)
 - a. both CAM outputs should be similar despite Affine transform
 - b. But CAM degenerates
 (converge to a trivial solution)
 so ECR regularizes the PCM
 outputs with the original CAM

Arithmer Confidential

Class Activation Map: Equivariant Attention Mechanism

Main contribution: PCM module

- uses attention to refine the mask from grad-CAM
- attention can capture contextual information

Arithmer Confidential

Class Activation Map: Experiments

model	bkg	aero	bike	bird	boat	bottle	bus	car	cat	chair	cow	table	dog	horse	mbk	person	plant	sheep	sofa	train	tv	mIoU
CCNN [25]	68.5	25.5	18.0	25.4	20.2	36.3	46.8	47.1	48.0	15.8	37.9	21.0	44.5	34.5	46.2	40.7	30.4	36.3	22.2	38.8	36.9	35.3
MIL+seg [27]	79.6	50.2	21.6	40.9	34.9	40.5	45.9	51.5	60.6	12.6	51.2	11.6	56.8	52.9	44.8	42.7	31.2	55.4	21.5	38.8	36.9	42.0
SEC [19]	82.4	62.9	26.4	61.6	27.6	38.1	66.6	62.7	75.2	22.1	53.5	28.3	65.8	57.8	62.3	52.5	32.5	62.6	32.1	45.4	45.3	50.7
AdvErasing [32]	83.4	71.1	30.5	72.9	41.6	55.9	63.1	60.2	74.0	18.0	66.5	32.4	71.7	56.3	64.8	52.4	37.4	69.1	31.4	58.9	43.9	55.0
AffinityNet [2]	88.2	68.2	30.6	81.1	49.6	61.0	77.8	66.1	75.1	29.0	66.0	40.2	80.4	62.0	70.4	73.7	42.5	70.7	42.6	68.1	51.6	61.7
Our SEAM	88.8	68.5	33.3	85.7	40.4	67.3	78.9	76.3	81.9	29.1	75.5	48.1	79.9	73.8	71.4	75.2	48.9	79.8	40.9	58.2	53.0	64.5

Pascal VOC 2012 val with Image level annotation only (no mask). Using ResNet38 as backbone.

fully-supervised learning SOTA: 90.0% (backbone is huge in this case though)

	Methods	Backbone	Saliency	val	test
	CCNN [25]	VGG16		35.3	35.6
Comparison on	EM-Adapt [24]	VGG16		38.2	39.6
	MIL+seg [27]	OverFeat		42.0	43.2
Pascal VUC	SEC [19]	VGG16		50.7	51.1
2012 dataset	STC [33]	VGG16	\checkmark	49.8	51.2
with other	AdvErasing [32]	VGG16	\checkmark	55.0	55.7
wookhy	MDC [34]	VGG16	\checkmark	60.4	60.8
weakiy	MCOF [36]	ResNet101	\checkmark	60.3	61.2
supervised	DCSP [4]	ResNet101	\checkmark	60.8	61.9
methods	SeeNet [15]	ResNet101	\checkmark	63.1	62.8
	DSRG [16]	ResNet101	\checkmark	61.4	63.2
	AffinityNet [2]	ResNet38		61.7	63.7
	CIAN [10]	ResNet101	\checkmark	64.1	64.7
	IRNet [1]	ResNet50		63.5	64.8
	FickleNet [21]	ResNet101	\checkmark	64.9	65.3
	Our baseline	ResNet38		59.7	61.9
	Our SEAM	ResNet38		64.5	65.7

Image Depth Information: HN labels

- HN labels generation
 - Computing angles and height relative to the floor plane using RGB-D
 - Everything is binned to create labels
- Training segmentation model on HN-labels
- Fine-tuning on real dataset

The point is more to show: pretrained HN labels >> pretrained ImageNet

Image Depth Information: Experiments

Arch	Pre-training Method	Wall	Floor	Cabinet	Bed	Bookshelf	Sofa	Dresser	Avg acc	mIoU	Global acc
SegNet	No pre-training	77.57	74.91	42.36	13.25	6.58	22.42	3.17	13.73	8.78	38.74
	CIFAR100 pre-train	66.33	66.96	19.84	0.03	0.01	0.05	0	10.70	6.23	31.90
	ImageNet pre-train	81.54	86.1	58.86	37.76	35.05	38.25	4.35	25.40	17.34	50.58
	HN pre-training	83.26	90.63	58.81	58.40	38.79	37.05	14.24	26.16	18.24	52.92
DeepLab	No pre-training	18.70	66.72	60.78	22.30	20.70	15.24	12.49	24.77	6.73	31.41
	ImageNet pre-train	28.85	74.69	87.98	64.40	56.22	59.10	50.78	57.84	34.27	61.70
	HN pre-training	32.00	77.64	87.45	60.15	55.67	60.51	53.69	56.04	33.49	62.98

dataset: NUYv2, trained on 50 epochs only. HN labels are from NUYv2. ImageNet is 25x bigger

How about using videos: Self-supervised Video Object Segmentation

Original paper: https://arxiv.org/abs/2006.12480v1

- Learn unsupervised to track similar pixels across frames
- Then when giving an initial mask (on this illustration, in the frame 0), the model can infer the same object for the next frames

How about using videos: Self-supervised Video Object Segmentation

Original paper: https://arxiv.org/abs/2006.12480v1

- Learn unsupervised to track similar pixels across frames
- Then when giving an initial mask (on this illustration, in the frame 0), the model can infer the same object for the next frames

Method	Sup.	Overall	Se	en	Unseen			
1.10thiot	oup.	overun	\mathcal{J}	\mathcal{F}	\mathcal{J}	${\cal F}$		
Vid. Color. [3]	X	38.9	43.1	38.6	36.6	37.4		
CorrFlow [4]	×	46.6	50.6	46.6	43.8	45.6		
MAST [7]	X	64.2	63.9	64.9	60.3	67.7		
Ours	×	67.3	67.2	67.9	63.2	70.6		
OSMN [49]	1	51.2	60.0	60.1	40.6	44.0		
MSK [50]	1	53.1	59.9	59.5	45.0	47.9		
RGMP [51]	1	53.8	59.5	-	45.2	-		
OnAVOS [11]	1	55.2	60.1	62.7	46.6	51.4		
S2S [44]	1	64.4	71.0	70.0	55.5	61.2		
A-GAME [52]	1	66.1	67.8	_	60.8	-		
STM [40]	1	79.4	79.7	84.2	72.8	80.9		

On Youtube VOS val. J (Mean) J (Recall) F(Mean) F(Recall). The models in the bottom part of the table are trained fully-supervised.

Arithmer 株式会社 〒106-6040 東京都港区六本木一丁目6番1号泉ガーデンタワー 38/40F(受付) 03-5579-6683 https://arithmer.co.jp/

©2020 Arithmer.Inc. 当スライド(ページ)内の文章・画像等の無断転載はご遠慮ください。引用する場合には引用の要件を遵守してください。