

VIBE: Video Inference for Human Body Pose and Shape Estimation

Paper: https://arxiv.org/pdf/1912.05656.pdf

Dynamics - Christian Saravia

1

Christian Martin Saravia Hernandez

- Graduate School
 - Universidad Peruana de Ciencias Aplicadas
 - Bs. Software Engineering
- Former Job
 - Ficha Inc
 - Algorithm Development Engineer
 - Research & application of deep learning in computer vision problems
- Current Job
 - Application of machine learning / deep learning to computer vision problems
 - Object detection
 - Object classification
 - Research topics
 - Attention & Transformers

Contents

- Introduction
 - o Problem to Solve
- Dataset
- VIBE approach
 - Pretrained Model
 - Temporal Encoder
 - Motion Discriminator
- Results

Problem

- Lack of **in-the-wild** ground-truth 3D
- Previous work combine indoor 3D datasets with videos having 2D ground-truth or pseudo ground-truth keypoint annotations
 - Indoor 3D are limited in the number of subjects, range of motion and image complexity
 - Poor amount of video labeled with ground-truth 2D pose
 - Pseudo-ground-truth 2D labels are not reliable for modeling 3D human motion

Learning 3D Human Dynamics from Video - https://arxiv.org/pdf/1812.01601.pdf

Dataset

• AMASS dataset for 3D motion capture

What is VIBE

- "Our key novelty is an adversarial learning framework that leverages AMASS to discriminate between real human motions and those produced by our temporal pose and shape regression networks. We define a novel temporal network architecture with a self-attention mechanism and show that adversarial training, at the sequence level, produces kinematically plausible motion sequences without in-the-wild ground-truth 3D labels."
- Adversarial learning framework & discriminate, are terms used when referring to generative adversarial networks. The
 architecture involves the simultaneous training of two models: the generator and the discriminator. (Thanks enrico for the notes:
 https://www.notion.so/Generative-Adversarial-Networks-0692b1ea34e641a0ae011237345a51c4)
- **Novel temporal network architecture.** Since we are analyzing videos, the concept of sequence is implied. VIBE uses a gated recurrent units (GRU) to capture the sequential nature of human motion.
- Self-attention mechanism is used to amplify the contribution of distinctive frames.

(

Elements VIBE

- "Our key novelty is an adversarial learning framework that leverages AMASS to discriminate between real human motions and
 those produced by our temporal pose and shape regression networks. We define a novel temporal network architecture with a
 self-attention mechanism and show that adversarial training, at the sequence level, produces kinematically plausible motion
 sequences without in-the-wild ground-truth 3D labels."
- Architectures used:
 - Yolov3, for detecting the person box
 - Resnet50, for feature extraction
 - GRU, for sequence encoding
 - Self attention, for frame scoring
 - GAN, for adversarial training and loss

VIBE architecture

Pre-trained model

• A sequence of T frames is fed to a convolutional network, f, which functions as a feature extractor and outputs a vector $f_i \in \mathbb{R}^{2048}$ for each frame

$$f(I_1),\ldots,f(I_T)$$

Temporal encoder output

SMPL

$$M(\vec{\beta}, \vec{\theta}; \Phi) : \mathbb{R}^{|\vec{\theta}| \times |\vec{\beta}|} \mapsto \mathbb{R}^{3N}$$

Shape linear coefficients in a 10-dimensional space
$$\overrightarrow{ heta}$$
 Pose vector in a 72-dimensional space

VIBE

$$\widehat{\Theta} = \left[(\widehat{\theta}_1, \dots, \widehat{\theta}_T), \widehat{\beta} \right]$$

Single body shape prediction for the sequence

$$\hat{ heta}_t$$

 $\widehat{ heta}_{ extbf{ extit{t}}}$ Pose parameters at step t

Temporal encoder

- $f(I_1),\ldots,f(I_T)$ are sent to a Gated Recurrent Unit (GRU) layer that yields a latent feature vector $oldsymbol{g}_i$
- ullet Then use $oldsymbol{g_i}$ as an input to T regressors with iterative feedback.
- We use a 6D rotation representation instead of axis angles
- Loss:

$$L_{\mathcal{G}} = L_{3D} + L_{2D} + L_{SMPL} + L_{adv}$$

$$L_{3D} = \sum_{t=1}^{T} \|X_t - \hat{X}_t\|_2,$$

$$L_{2D} = \sum_{t=1}^{T} \|x_t - \hat{x}_t\|_2,$$

$$L_{SMPL} = \|\beta \ - \ \hat{\beta}\|_2 + \sum_{t=1}^T \|\theta_t \ - \ \hat{\theta}_t\|_2 \ ,$$

Motion Discriminator

Enforces the generator to produce feasible real world poses that are aligned with 2D joint locations.

$$\phi_i = \phi(h_i), \quad a_i = rac{{
m e}^{\phi_i}}{\sum_{t=1}^N {
m e}^{\phi_t}}, \quad r = \sum_{i=1}^N a_i h_i.$$

The weights a_i are learned by a linear MLP layer φ , and are then normalized using softmax.

Results

¹ Kanazawa et al., End-to-end Recovery of Human Shape and Pose, CVPR 2018

13

² Kanazawa et al., Learning 3D Human Dynamics from Video, CVPR 2019

³ Kolotouros et al., Learning to Reconstruct 3D Human Pose and Shape via Modeling-fitting in the Loop, ICCV 2019

Results

Arithmer

Reference

- VIBE: https://arxiv.org/pdf/1912.05656.pdf
- Notes on GAN: https://www.notion.so/Generative-Adversarial-Networks-0692b1ea34e641a0ae011237345a51c4
- GAN Loss Function: https://machinelearningmastery.com/generative-adversarial-network-loss-functions/
- More of GAN: https://dl4physicalsciences.github.io/files/nips_dlps_2017_slides_louppe.pdf
- Angle to 6D Notation: https://arxiv.org/pdf/1812.07035.pdf
- Iterative Regression with 3D Feedback: https://arxiv.org/pdf/1712.06584.pdf
- Camera Weak Perspective: https://web.stanford.edu/class/cs231a/course_notes/01-camera-models.pdf

15