画像からの3D人体モデリング

本資料は2020年7月9日に社内共有資料として展開していたものをWEBページ向けにリニューアルした内容になります。

■Outline

  • Introduction
    • Definition of the problem
    • Challenges
    • Common approaches
  • Statistical body models
    • Definition of the setup
    • Aim of the methods
    • Typical solutions
    • SMPL
  • 3D human pose
    • Challenges
    • 2D solutions
    • SMPLify
  • Conclusions

■The data

■The Model

■SMPL

SMPL stands for Skinned Multi-Person Linear model.
It is a “statistical” body model, which means it is learned from data.
It captures 2 aspects of the human body:

  1. Shape
  2. Pose

■Example: Joint regression

■Example: Inference

■SMPLify

The goal of SMPLify is to automatically estimate
both 3D pose and 3D body shape from a single RGB image.

■Ingredients

■Objective functions

■Example: comparison

■References

Models

Datasets

My ongoing notes on Notion:
https://www.notion.so/erinaldi/Fundamentals-of-riggin g-eb8acd313a444b6999ef1b0a7a13b892

■Future discussion

A few links for modern motion capture papers:

■ダウンロード

画像からの3D人体モデリング.pdf